Allegro PSpice System

Allegro PSpice System

Even experienced electronics developers can hardly predict the behavior of electrical circuits. Therefore, circuits or only critical circuit parts are analyzed either by physically constructed prototypes and subsequent measurements or by circuit simulations. The trend here is clearly towards virtually simulated measurement, as the development cycles are getting shorter and shorter, and simulations can be used very promptly to make statements that correlate with measurements. Worldwide, PSpice has been the reference simulator for years, and most component manufacturers offer PSpice simulation models on the Internet.

Based on the circuit diagram drawn for a PCB layout, a simulation can be started. If necessary, the user inserts a current source or a defined stimulus and measuring points in the circuit diagram. This procedure is similar to a physical setup with function generator and oscilloscope.

Product Features

Allegro PSpice System includes all features from PSpice A/D and PSpice Designer but without the schemetic OrCAD Capture. In addition it has the following features:

Allegro CAD Flow Integration
Allegro CAD Flow Integration

Allegro CAD Flow Integration

PSpice is integrated in the Cadence Allegro CAD design flow for PCBs. The design intend is entered in the Cadence Allegro Schematic Authoring tool. The schematic can be used to drive a simulation and develop the functionality of the circuit. The same schematic can be used for documentation of the future product. The netlist can be created and the PCB Editor uses the schematic to cross probe during placement and routing. A comprehensive integration provides broad information and avoids errors in the design process.

Sensitivity Analysis
Display of sensitive components

Sensitivity Analysis

In this simulation variant, the sensitivity of all components of the circuit is calculated. Sensitivity indicates the relative influence of each component on one or more target functions of a circuit, such as e.g. maximum power, bandwidth, center frequency, etc. A graphical representation is available for evaluation. It shows the influence on the selected target function of the critical components, with regard to the component tolerance. This allows you to choose non-critical components with larger tolerances, while components where small changes in value have a major influence on the target functions are specifically specified with tight tolerances. This reduces costs at insensitive points. The worst case results for each specification is calculated as well.

Advanced Monte Carlo
Component parameter optimization

Optimizer

The optimizer function can independently dimension the components based on a given circuit (netlist) so that a target function is achieved as precisely as possible. Based on a defined objective function, the optimizer function not only calculates the theoretically optimal component values, e.g. R1 = 57.34 ohms and R2 = 14.29 ohms and ß = 129. It is also possible to specify specific component series from which the values may be selected as possible target results. For example, with an E24 series, the optimizer simulation would select values of R1 = 56 ohms and R2 = 22 ohms as a component combination for optimum target function.

Parametric Plot
Curves of different parameter settings

Parametric Plot

The parametric plot sweeps multiple values at the same time in a nested structure. Once decided how the different parameters must be varied (for example voltage source from 0 volts to 10 volts with the step size 1 volt, a from 1 pF to 10 pF in steps 0.1 p and a resistor from 1 k to 1 meg in a logarithmic setup), the tool calculates the results for each specification and each combination of parameters possible. When it is done, you can quick plot so many curves as you want to analyze the behavior of your circuit. It is possible to dimension values for specifications like rise time, overshoot, power, bandwitdh, etc.

Global Tolerances
Global tolerances for all models

Global Tolerances

PSpice Advanced Analysis supports the assignment of global tolerances in PSpice models. In a PSpice circuit with freely available PSpice models, parameters for manufacturing tolerances can be specified centrally in the software. In a Monte Carlo simulation, the behavior of the circuit is then no longer simulated at exact values for resistors (eg 10 ohms), but component combinations with tolerances of ±5% can be performed for all resistors without the simulation models need to be adjusted. Tolerances can be given globally for resistors, capacitors, inductors, voltage and current sources. However, it is also possible to set specific tolerances for individual components in the software, for example D1 1N4148 and subcircuits.

DMI (Device Model Interface)
DMI (Device Model Interface)

Device Model Interface

PSpice uses the DMI (Device Model Interface) to simulate complex circuit parts as virtual prototypes. For this purpose, the circuit parts with programming languages such as C / C ++, SystemC or Verilog-A are described in various levels of abstraction and the program code in PSpice is integrated via the Device Model Interface. Possible applications include Digital Power Supply (SMPS), FIR or Noise Filter or even Hardware in the Loop (HIL). The details are described in the Application Note .

Advanced Monte Carlo
Failure probability out of specification

Advanced Monte Carlo

With Monte Carlo analysis, tolerance of components is varied using a guassian, an uniform or a self defined distribution. The result is a probability density graph where tolerances for each component are varied in each iteration to calculate value of each specification. So can be determined the different effects on the target functions. With this analysis, statements can be made as how high yield is, how many products would fail in quality assurance. Graphical representations can be used to detect weak points and the developer can specifically plan for quality and increase yield changing components with tight tolerances or absolutely redesigning the circuit. Monte Carlo analysis should be used together with Sensitivity analysis.

PSpice Reference Circuits and Examples

Unten sehen Sie eine Auswahl elektronischer Grundschaltungen. Es gibt jeweils einen Link für ein Video-Tutorial, das das Verhalten dieser Schaltung erklärt. Die Schaltung ist für die Simulation in PSpice aufbereitet und kann kostenlos als ZIP-Datei heruntergeladen werden. Sie können die Ergebnisse der Simulation leicht reproduzieren und Komponenten und Einstellungen austauschen, um die Schaltung für Ihre eigene Ausbildung besser zu verstehen.

Kondensator-Schaltungen

Kondensator als Phasenverschiebung

Phasenverschiebung

Video Schaltung

Kondensatoraufladung

Kondensatoraufladung

Video Schaltung

Kondensatorentladung

Kondensatorentladung

Video Schaltung

Hochsetzsteller

Hochsetzsteller

Video Schaltung

Dioden-Schaltungen

Diodenkennlinie

Diodenkennlinie

Video Schaltung

Vorwiderstand

Vorwiderstand Diode

Video Schaltung

Freilaufdiode

Freilaufdiode

Video Schaltung

Reihenstabilisierung

Reihenstabilisierung

Video Schaltung

Stromregelung LED

Stromregelung LED

Video Schaltung

Transistor-Schaltungen

Impedanzwandler

Impedanzwandler

Video Schaltung

Emitterschaltung

Emitterschaltung

Video Schaltung

Stromspiegel

Stromspiegel

Video Schaltung

Bipolar Schalter

Bipolar Schalter

Video Schaltung

Induktive Lasten

Induktive Lasten

Video Schaltung

Kapazitive Lasten

Kapazitive Lasten

Video Schaltung

Open Collector

Open Collector

Video Schaltung

Differenzverstärker

Differenzverstärker

Video Schaltung

Mehrstufiger Verstärker

Mehrstufiger Verstärker

Video Schaltung

Frequenzmultiplizierer

Frequenzmultiplizierer

Video Schaltung

FET-Transistor-Schaltungen

N-Kanal J-FET

N-Kanal J-FET

Video Schaltung

N-Kanal J-FET als Verstärker

N-Kanal J-FET Verstärker

Video Schaltung

P-Kanal J-FET

P-Kanal J-FET

Video Schaltung

Thyristoren-Schaltungen

Thyristor als Schalter

Thyristor Schalter

Video Schaltung

Thyristor als Sägezahngenerator

Sägezahngenerator

Video Schaltung

IGBT(insulated-gate bipolar transistor)

IGBT als Schalter

IGBT als Schalter

Video Schaltung

Triac (Triode for Alternating Current)

Triac Phasenanschnittsteuerung

Phasenanschnittsteuerung

Video Schaltung

Operationsverstärker (OPV)

Invertierender Operationsverstärker

Invertierender Verstärker

Video Schaltung

Nicht Invertierender Operationsverstärker

Nicht-Invertierender Verstärker

Video Schaltung

Invertierender Addierer

Invertierender Addierer

Video Schaltung

Nicht Invertierender Addierer

Nicht-Invertierender Addierer

Video Schaltung

Operationsverstärker als Integrierer

Integrierer

Video Schaltung

Operationsverstärker als Differenzierer

Differenzierer

Video Schaltung

Schmitt-Trigger

Schmitt-Trigger

Video Schaltung

Nicht invertierender Schmitt-Trigger

Nicht invert. Schmitt-Trigger

Video Schaltung

Digital Analog Wandler (DAW, DA-Wandler)

Digital Analog Wandler (DAW)

Video Schaltung

Integrator mit Reset

Integrator mit Reset

Video Schaltung

Oszillatoren

RC-Oszillator

RC-Oszillator

Video Schaltung

Schwingkreis

Schwingkreis

Video Schaltung

Parallelschwingkreis

Parallelschwingkreis

Video Schaltung

Reihenschwingkreis

Reihenschwingkreis

Video Schaltung

Hartley Oszillator

Hartley Oszillator

Video Schaltung

Filter

Passiver Bandpass

Passiver Bandpass

Video Schaltung

Bandpass 1. Ordnung

Bandpass 1. Ordnung

Video Schaltung

Aktiver Bandpass mit Einfachmitkopplung

Bandpass mit Einfachmitkopplung

Video Schaltung

Notch Filter (Kerbenfilter)v

Notch Filter (Kerbenfilter)

Video Schaltung

Tschebyscheff Filter

Tschebyscheff Filter

Video Schaltung

Motor-Schaltungen

Blindleistungskompensation

Blindleistungskompensation

Video Schaltung

Phasenverschiebung an einem Motor

Phasenverschiebung

Video Schaltung

Schaltregler-Regelungstechnik

PID Regler

PID Regler

Video Schaltung

Synchronized Switch Harvesting on Inductor (SSHI)

Switch Harvesting (SSHI)

Video Schaltung

Gleichrichter

Cockcroft Walton

Cockcroft Walton

Video Schaltung

Drehstrom

Drehstrom

Drehstrom

Video Schaltung

Dreieckschaltung

Dreieckschaltung

Video Schaltung

Sternschaltung

Sternschaltung

Video Schaltung

Sternpunktverschiebung

Sternpunktverschiebung

Video Schaltung

Leistung bei symmetrischer Last

Leistung symmetrischer Last

Video Schaltung

Dreipuls Mittelpunktschaltung

Mittelpunkt Dreipuls

Video Schaltung

Product Feature Comparison for PSpice

    PSpice A/D PSpice Designer PSpice Designer Plus Allegro PSpice System OrCAD PCB Designer Professional with PSpice
Analog circuit simulation
Digital circuit elements
OrCAD Capture -
OrCAD Capture CIS - - - -
Smoke Analysis -
Systems Option - - -
Advanced Analysis - - -
Matlab Simulink co-simulation - - -
DMI Device Model Interface - - -
This table is for information only. For details consult the official datasheets from Cadence.